• 1.

    Kuhn, K. J. Considerations for ultimate CMOS scaling. IEEE Trans. Electron Dev. 59, 1813–1828 (2012).

  • 2.

    Ferain, I., Colinge, C. A. & Colinge, J.-P. Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479, 310–316 (2011).

  • 3.

    Auth, C. et al. A 10 nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, self-aligned quad patterning, contact over active gate and cobalt local interconnects. In Electron Devices Meeting 2017, 29.1.1–29.1.4 (IEEE, 2017).

  • 4.

    Moore, G. E. Cramming more components onto integrated circuits. Proc. IEEE 86, 82–85 (1998).

  • 5.

    Dennard, R. H., Gaensslen, F. H., Yu, H. N., Rideout, V. L., Bassous, E. & Leblanc, A. R. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid St. Circ. 9, 256–268 (1974).

  • 6.

    Ghani, T. et al. A 90 nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors. In Electron Devices Meeting 2003, 11.6.1–11.6.3 (IEEE, 2003).

  • 7.

    Krishnamohan, T. et al. Comparison of (001), (110) and (111) uniaxial- and biaxial- strained-Ge and strained-Si PMOS DGFETs for all channel orientations: mobility enhancement, drive current, delay and off-state leakage. In Electron Devices Meeting 2008, 1–4 (IEEE, 2008).

  • 8.

    Huang, X. et al. Sub 50-nm FinFET: PMOS. In Electron Devices Meeting 1998, 67–70 (IEEE, 1999).

  • 9.

    Schumacher, M., Baumann, P. K. & Seidel, T. AVD and ALD as two complementary technology solutions for next generation dielectric and conductive thin-film processing. Chem. Vap. Depos. 12, 99–108 (2006).

  • 10.

    Horowitz, M. Computing’s energy problem (and what we can do about it). In Solid-State Circuits Conference Digest of Technical Papers 2014 10–14 (IEEE, 2014).

  • 11.

    Theis, T. N. & Solomon, P. M. It’s time to reinvent the transistor! Science 327, 1600–1601 (2010).

  • 12.

    Nikonov, D. E. & Young, I. A., Benchmarking of beyond-CMOS exploratory devices for logic integrated circuits. IEEE J. Explor. Solid-State Computat. Devices Circuits 1, 3–11 (2015).

  • 13.

    Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338 (2018).

  • 14.

    Zografos, O. et al. Design and benchmarking of hybrid CMOS-spin wave device circuits compared to 10 nm CMOS. In 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), 686–689 (IEEE, 2015).

  • 15.

    Ma, K. et al. Nonvolatile processor architecture exploration for energy-harvesting applications. IEEE Micro 35, 32–40 (2015).

  • 16.

    Mead, C. Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636 (1990).

  • 17.

    Patil, A. D., Manipatruni, S., Nikonov, D., Young, I. A. & Shanbhag, N. R. 2017. Shannon-inspired statistical computing to enable spintronics. Preprint at https://arxiv.org/abs/1702.06119 (2017).

  • 18.

    Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459 (1971).

  • 19.

    Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

  • 20.

    Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509 (2016).

  • 21.

    Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101 (2009).

  • 22.

    Rojas Sánchez, J. C. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 4, 2944 (2013).

  • 23.

    Shen, K., Vignale, G. & Raimondi, R. Microscopic theory of the inverse Edelstein effect. Phys. Rev. Lett. 112, 096601 (2014).

  • 24.

    Shiomi, Y. et al. Spin–electricity conversion induced by spin injection into topological insulators. Phys. Rev. Lett. 113, 196601 (2014).

  • 25.

    Varignon, J., Vila, L., Barthelemy, A. & Bibes, M. A new spin for oxide interfaces. Nat. Phys. 14, 322 (2018).

  • 26.

    Spaldin, N. A. & Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005).

  • 27.

    Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014).

  • 28.

    Cherifi, R. O. et al. Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345–351 (2014).

  • 29.

    He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).

  • 30.

    Manipatruni, S. et al. Voltage control of uni-directional anisotropy in ferromagnet–multiferroic system. Preprint at https://arxiv.org/abs/1801.08280 (2018).

  • 31.

    Brataas, A., Bauer, G. E. & Kelly, P. J. Non-collinear magnetoelectronics. Phys. Rep. 427, 157–255 (2006).

  • 32.

    Manipatruni, S., Nikonov, D. E. & Young, I. A. Modeling and design of spintronic integrated circuits. IEEE Trans. Circuits Syst. 59, 2801–2814 (2012).

  • 33.

    Omori, Y. et al. Inverse spin Hall effect in a closed loop circuit. Appl. Phys. Lett. 104, 242415 (2014).

  • 34.

    Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699 (2014).

  • 35.

    Mahendra, D. C. et al. Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered BixSe(1−x) topological insulator material. Preprint at https://arxiv.org/abs/1703.03822 (2017).

  • 36.

    Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261–1266 (2016).

  • 37.

    Ast, C. R. et al. Giant spin splitting through surface alloying. Phys. Rev. Lett. 98, 186807 (2007).

  • 38.

    Veit, M. J., Arras, R., Ramshaw, B. J., Pentcheva, R. & Suzuki, Y. Nonzero Berry phase in quantum oscillations from giant Rashba-type spin splitting in LaTiO3/SrTiO3 heterostructures. Nat. Commun. 9, 1458 (2018).

  • 39.

    Meindl, J. D., Chen, Q. & Davis, J. A. Limits on silicon nanoelectronics for terascale integration. Science 293, 2044–2049 (2001).

  • 40.

    Manipatruni, S., Lipson, M. & Young, I. A. Device scaling considerations for nanophotonic CMOS global interconnects. IEEE J. Sel. Topics Quantum Electron. 19, 8200109 (2013).

  • 41.

    Mayadas, A. F., Shatzkes, M. & Janak, J. F. Electrical resistivity model for polycrystalline films: the case of specular reflection at external surfaces. Appl. Phys. Lett. 14, 345–347 (1969).

  • 42.

    Chu, Y. H. et al. Low voltage performance of epitaxial BiFeO3 films on Si substrates through lanthanum substitution. Appl. Phys. Lett. 92, 102909 (2008).

  • 43.

    Gardner, D. S., Meindl, J. D. & Saraswat, K. C. Interconnection and electro migration scaling theory. IEEE Trans. Electron Dev. 34, 633–643 (1987).

  • 44.

    Karube, S., Kondou, K. & Otani, Y. 2016. Experimental observation of spin to charge current conversion at non-magnetic metal/Bi2O3 interfaces. Preprint at https://arxiv.org/abs/1601.04292 (2016).

  • 45.

    Pesin, D. & Balents, L. Mott physics and band topology in materials with strong spin–orbit interaction. Nat. Phys. 6, 376 (2010).

  • 46.

    Rojas-Sánchez, J.-C. et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films. Phys. Rev. Lett. 116, 096602 (2016).

  • 47.

    Khang, N. H. D., Ueda, Y. & Hai, P. N. A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching. Nat. Mater. 17, 808–813 (2018).

  • 48.

    Cheng, C. et al. Direct observation of spin-to-charge conversion in MoS2 monolayer with spin pumping. Preprint at https://arxiv.org/abs/1510.03451 (2015).

  • 49.

    Wang, G. et al. Spin–orbit engineering in transition metal dichalcogenide alloy monolayers. Nat. Commun. 6, 10110 (2015).

  • 50.

    Kimura, T., Goto, T., Shintani, H., Ishizaka, K., Arima, T. & Tokura, Y. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

  • 51.

    Mundy, J. A. et al. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature 537, 523 (2016).

  • 52.

    Srisukhumbowornchai, N. & Guruswamy, S. Large magnetostriction in directionally solidified FeGa and FeGaAl alloys. J. Appl. Phys. 90, 5680–5688 (2001).

  • 53.

    Ryu, J., et al. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn J. Appl. Phys. 40, 4948 –4951 (2001).

  • 54.

    Street, M. et al. Increasing the Néel temperature of magnetoelectric chromia for voltage-controlled spintronics. Appl. Phys. Lett. 104, 222402 (2014).

  • 55.

    Wang, J. et al. Magnetoelectric Fe2TeO6 thin films. J. Phys. Condens. Matter 26, 055012 (2014).

  • 56.

    Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5, 266–270 (2010).

  • 57.

    Nikonov, D. E., Bourianoff, G. I. & Ghani, T. Proposal of a spin torque majority gate logic. IEEE Electron Device Lett. 32, 1128–1130 (2011).

  • 58.

    Manipatruni, S., Nikonov, D. E. & Young, I. A. Material targets for scaling all-spin logic. Phys. Rev. Appl. 5, 014002 (2016).

  • 59.

    Imre, A. et al. Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205–208 (2006).

  • 60.

    Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nat. Commun. 5, 4700 (2014).

  • 61.

    Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011).

  • 62.

    Lu, H. & Seabaugh, A. Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2, 44–49 (2014).

  • 63.

    Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

  • 64.

    Newns, D., Elmegreen, B., Liu, X. H. & Martyna, G. A low-voltage high-speed electronic switch based on piezoelectric transduction. J. Appl. Phys. 111, 084509 (2012).

  • 65.

    Son, J., Rajan, S., Stemmer, S. & Allen, S. J. A heterojunction modulation-doped Mott transistor. J. Appl. Phys. 110, 084503 (2011).

  • 66.

    Srinivasan, S., Diep, V., Behin-Aein, B., Sarkar, A. & Datta, S. Modeling multi-magnet networks interacting via spin currents. In Handbook of Spintronics 1281–1335 (2016).

  • 67.

    Apalkov, D. M. & Visscher, P. B. Spin-torque switching: Fokker–Planck rate calculation. Phys. Rev. B 72, 180405 (2005).

  • 68.

    Butler, W. H. et al. Switching distributions for perpendicular spin-torque devices within the macrospin approximation. IEEE Trans. Magnet. 48, 4684–4700 (2012).

  • 69.

    Shannon, C. E. A universal Turing machine with two internal states. Automata Stud. 34, 157–165 (1957).

  • 70.

    Amarù, L. et al. Majority logic synthesis. In Proc. International Conference on Computer-Aided Design 79 (ACM, 2018).

  • 71.

    Manipatruni, S., Nikonov, D. E. & Young, I. A. All-spin nanomagnetic state elements. Appl. Phys. Lett. 103, 063503 (2013).

  • 72.

    Dutta, S. et al. Highly scaled ruthenium interconnects. IEEE Electron Dev. Lett. 38, 949–951 (2017).

  • 73.

    Dutta, S. et al. Sub-100 nm2 cobalt interconnects. IEEE Electron Dev. Lett. 39, 731–734 (2018).

  • Article credit to: http://feeds.nature.com/~r/nature/rss/current/~3/JzrOiD64Vqc/s41586-018-0770-2

    Similar Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *